Evidence for substrate-dependent inhibition profiles for human liver aldehyde oxidase.
نویسندگان
چکیده
The goal of this study was to provide a reasonable assessment of how probe substrate selection may impact the results of in vitro aldehyde oxidase (AO) inhibition experiments. Here, we used a previously studied set of seven known AO inhibitors to probe the inhibition profile of a pharmacologically relevant substrate N-[(2-dimethylamino)ethyl]acridine-4-carboxamide (DACA). DACA oxidation in human liver cytosol was characterized with a measured V(max) of 2.3 ± 0.08 nmol product · min(-1) · mg(-1) and a K(m) of 6.3 ± 0.8 µM. The K(ii) and K(is) values describing the inhibition of DACA oxidation by the panel of seven inhibitors were tabulated and compared with previous findings with phthalazine as the substrate. In every case, the inhibition profile shifted to a much less uncompetitive mode of inhibition for DACA relative to phthalazine. With the exception of one inhibitor, raloxifene, this change in inhibition profile seems to be a result of a decrease in the uncompetitive mode of inhibition (an affected K(ii) value), whereas the competitive mode (K(is)) seems to be relatively consistent between substrates. Raloxifene was found to inhibit competitively when using DACA as a probe, and a previous report showed that raloxifene inhibited uncompetitively with other substrates. The relevance of these data to the mechanistic understanding of aldehyde oxidase inhibition and potential implications on drug-drug interactions is discussed. Overall, it appears that the choice in substrate may be critical when conducting mechanistic inhibition or in vitro drug-drug interactions prediction studies with AO.
منابع مشابه
Development of a Sensitive Spectrofluorometric-Multivariate Calibration Method for Enzyme Kinetic of Aldehyde Oxidase
Attempts to obtain experimental values for the kinetic parameters of phenanthridine oxidation by guinea pig or rabbit liver aldehyde oxidase using common spectrophotometric methods have not been successful due to a lower limit of detection. In the present study, a new spectrofluorimetric assay in combination with a multivariate calibration method for enzymatic kinetic study of aldehyde oxidase ...
متن کاملDevelopment of a Sensitive Spectrofluorometric-Multivariate Calibration Method for Enzyme Kinetic of Aldehyde Oxidase
Attempts to obtain experimental values for the kinetic parameters of phenanthridine oxidation by guinea pig or rabbit liver aldehyde oxidase using common spectrophotometric methods have not been successful due to a lower limit of detection. In the present study, a new spectrofluorimetric assay in combination with a multivariate calibration method for enzymatic kinetic study of aldehyde oxidase ...
متن کاملHepatic Aldehyde Oxidase
Previous reports on rabbit liver aldehyde oxidase described the purification and some properties of the enzyme (1) and the differential inhibition of electron transfer to various acceptors (2). The latter study furnished evidence for the participation of several electron carriers in the internal electron transport sequence of the enzyme. The present communication summarizes the results of studi...
متن کاملEvaluation of rhesus monkey and guinea pig hepatic cytosol fractions as models for human aldehyde oxidase.
Aldehyde oxidase (AOX) is a cytosolic enzyme expressed across a wide range of species, including guinea pig and rhesus monkey. These species are believed to be the best preclinical models for studying human AOX-mediated metabolism. We compared AOX activity in rhesus monkeys, guinea pigs, and humans using phthalazine and N-[2-(dimethylamino)ethyl]acridone-4-carboxamide (DACA) as substrates and r...
متن کاملHuman liver aldehyde oxidase: differential inhibition of oxidation of charged and uncharged substrates.
HUMAN LIVER ALDEHYDE OXIDASE (ALDEHYDE: O(2) oxidoreductase, EC 1.2.3.1) has been purified 60-fold and some of its properties studied. Like aldehyde oxidase from other mammalian species, human liver aldehyde oxidase is an enzyme with dual substrate specificity, possessing the ability to catalyze not only the oxidation of aldehydes to the corresponding carboxylic acids, but also the hydroxylatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2013